
Functional Reactive
Programming

Brandon Siegel
Senior Engineer, Mobile Defense

Topics

● Monads

● Futures and Promises

● Observables, Observers, Subscriptions, and
Subjects

● Functional Reactive Programming in
Practice

What is a monad?

What is a monad?

“A monad is just a monoid in the category of
endofunctors.” – Some Jackass

What is a monad?

“A monad is just a monoid in the category of
endofunctors.” – Some Jackass

● Monoid?
● Category theory??
● Functors!?
● Sounds hard, let’s go shopping

Let’s try again

What is a monad?

“The key to understanding monads is that they
are like burritos.” – Brent Yorgey

“Monads are space suits that let us safely travel
from one function to another.” – Eric Kow

What is a monad?

“The key to understanding monads is that they
are like burritos.” – Brent Yorgey

“Monads are space suits that let us safely travel
from one function to another.” – Eric Kow

● Nope.

Let’s take a step back

Monads are a tool used in functional
programming, so why are they used there?
What makes functional programming so…
functional?

Let’s take a step back

Monads are a tool used in functional
programming, so why are they used there?
What makes functional programming so…
functional?

Functional programming avoids dangerous
global mutable state by making functions and
function composition first class features.

Functions

If we can limit any side-effects to the scope of a
single function, we can be certain that calling
that function is idempotent.

Calling f(x) many times produces the same
result each time, and doesn’t affect the scope
of the caller.

Function composition

If we know that calling functions is idempotent,
we can chain multiple functions together to
produce complex behavior that is side-effect free.

Wait, simple idempotent functions that do one
thing, chained together to perform complex
operations…?

ls -l | tr -s ' ' | cut -d ' ' -f 3 | sort | uniq

What is a monad?

What is a monad?

Monads are tools that allows you to:
● take some data
● apply a series of transformations
and do so in a way that is idempotent and that
encapsulates side effects.

Data

To understand what the result of a computation
will be, we must consider not only the data we
are operating on but we must also anticipate
the effects that carrying out the computation
may cause.

Effects of computations

● A computation may not produce a result
● A computation may fail
● A computation may operate on and produce

multiple values
● A computation may take some time to run
● A computation may produce multiple values

after varying amounts of time

How do we handle effects?

● A computation may not produce a result

if (foo != null) {

...

}

How do we handle effects?

● A computation may fail

try {

...

} catch (Exception e) {

...

}

How do we handle effects?

● A computation may operate on or produce
multiple values

string[] strs = ...;

for (int i=0; i<strs.length; i++) {

...

}

How do we handle effects?

● A computation may take some time to run

HttpClient c = new HttpClient(...);

c.get(url, new ResponseHandler() {

@override public void onSuccess(...) {

...

}

});

How do we handle effects?

● A computation may produce multiple values
after varying amounts of time

public event
EventHandler Clicked;

...

if (Clicked != null) {

Clicked(this,

new EventArgs())

}

public void Button_Clicked(
object sender, EventArgs e) {

...

}

...

widget.Clicked += new
EventHandler(Button_Clicked);

How do we handle effects?

As developers, we anticipate the effects of our
computations and use well-known patterns to
deal with them. However, it’s all too easy to
forget about a potential effect. Also, without
digging into our source code, callers have no
way to know what effects calling our functions
may cause.

Explicitly calling out effects

If we encode the potential effects into the type
of the result, it solves two problems at once:
● The potential effects are part of the public

contract – callers know what effects may
occur when calling a function

● The compiler can check the type and warn
us if we’ve forgotten to handle a potential
effect

Data (+ effects) = type signature
A computation may not produce a result Option[T]

A computation may fail Try[T]

A computation may operate on and
produce multiple values

Enumerable[T]

A computation may take some time to
run

Future[T]

A computation may produce multiple
values after varying amounts of time

Observable[T]

What is a monad?

Monads are tools that allows you to:
● take some data
● apply a series of transformations
and do so in a way that is idempotent and that
encapsulates side effects.

Transformations = functions

If we have a monad object, we can apply
transformation functions to it that will transform
the value(s) but preserve the semantics of the
monad.

Useful but unexpected bonus: the function(s)
will not be applied until we ask for a result!

Transformations = functions

● filter
● map
● flatMap
● reduce
● foldLeft / foldRight

Composing functions on Enumerable

val nums = (1 to 100)

nums.filter(n => n%2 == 0)

 .map(n => n*n)

 .take(5)

 .foreach(n => print(n + “ ”))

>> 4 16 36 64 100

Composing functions on Enumerable

val nums = Stream.from(1)

nums.filter(n => n%2 == 0)

 .map(n => n*n)

 .take(5)

 .foreach(n => print(n + “ ”))

>> 4 16 36 64 100

Composing functions on Try

val divisor = 5

val items = (1 to 10)

val result = Try { 15 / divisor }

result.map(n => n*2)

 .flatMap(n => Try { items(n) })

>> Success(7)

Composing functions on Try

val divisor = 3

val items = (1 to 10)

val result = Try { 15 / divisor }

result.map(n => n*2)

 .flatMap(n => Try { items(n) })

>> Failure(IndexOutOfBoundsException)

Composing functions on Try

val divisor = 0

val items = (1 to 10)

val result = Try { 15 / divisor }

result.map(n => n*2)

 .flatMap(n => Try { items(n) })

>> Failure(ArithmeticException)

So...

Monads let us ignore certain effects of
computations and just focus on the core of
what we want to get done. They allow us to
apply a sequence of computations to a value,
call out potential side effects in their type
signature, and provide a representation of both
the result of the computations and the actual
side effects that occurred as their result.

Category theory! bind()! apply()!

There are subtleties to what technically is or is
not a monad, what properties they must exhibit,
and so on that are based in the mathematics of
category theory. Knowing this is not useful to
learning what monads are and how to use
them, so don’t get tripped up in the textbook
definition of a monad – if it acts like our
description of a monad, it’s close enough!

Erik Meijer

● Pioneered and popularized
FRP

● Created LINQ and
Reactive Extensions

● Influenced design of F#,
C#, Haskell

Monadic Types

Single Result Multiple Results

Synchronous Try[T] Enumerable[T]

Asynchronous Future[T] Observable[T]

Monadic Types

Single Result Multiple Results

Synchronous Try[T] Enumerable[T]

Asynchronous Future[T] Observable[T]

Future handles failures and latency

A Future allows us to attach code to an
asynchronous computation that will run when
that computation is complete. Used naively you
can still end up with ‘callback hell’ but because
Future is a monad, you can apply combinator
functions to schedule additional Futures and
transform intermediate results to obtain a final
result.

Future

val result = Future {

apiClient.getPosts(user)

}

result.onSuccess { posts => ...}

result.onFailure { e => ... }

Future

val result = Future {

client.getPosts(user)

}.flatMap { posts =>

val post = highestRated(posts)

Future { apiClient.getComments(post) }

}

result.onSuccess { comments => ... }

Operations on Future

● onComplete / onSuccess / onFailure
● recover / recoverWith / fallbackTo

● Await.ready / Await.result

Promises

A Future object allows a consumer to operate
on the result of an asynchronous computation.

The producer side of the producer / consumer
relationship is implemented using a Promise.

Promises

Promises are synchronization points between
producers and consumers. Producers can
insert a value, and consumers can acquire a
future from the promise that completes when a
value is assigned. A promise can only ever be
completed once, so completing a promise is
thread-safe.

Promises

val p = Promise[List[Post]]

val result = p.future

...

result.onComplete { ... }

...

p.success(apiClient.getPosts(user))

Let’s talk about
Functional Reactive Programming

Reactive

Reactive programming is a style of
programming in which data controls the
execution of the program. Contrast this with
typical imperative programming where
statements (such as if and for) control the
flow of execution.

Functional

Functional in this case simply means that we’ll
use functional concepts (composing
transformations on monads) instead of
procedural concepts like callbacks or events to
implement a reactive programming model.

Functional Reactive Programming

The decision to use functional vs. procedural,
or reactive vs. imperative programming
techniques are two separate arguments.
However, both functional and reactive
programming styles seem to provide benefits
over their alternatives, and it turns out they
actually compliment each other quite well.

Observable

Observables are the foundation of functional
reactive programming. They are collections that
asynchronously produce their values. Like
Enumerable, Observable produces a series of
values. Like Future, any of these values may
be produced at some arbitrary point in the
future.

Static Computation

val b = 1

val c = 2

val a = b + c

Reactive Computation

val bs = Observable(...)

val cs = Observable(...)

val as = bs.combineLatest(cs,

 (b, c) => b + c

)

as.subscribe(a => ...)

Observable, Observer, Subscription

● Observable exposes a stream of events
which Observers can subscribe to

● When an Observer subscribes to an
Observable, it obtains a Subscription

● An Observer can unsubscribe from a
Subscription when it is no longer interested
in receiving results

Observable

val trades: Observable[Trade] = ...

val suspectTrades =

 trades.buffer(2, 1)

 .filter(pair => isSuspect(pair))

 .map(

 pair => (pair(0).id,pair(1).id)

)

Subscriptions

val subscription = suspectTrades.
subscribe(suspects => ...)

...

subscription.unsubscribe()

Observer

For Enumerable, we needed one handler
(forEach) to handle the results because we only
had one situation we had to react to (the next
element has been produced, aka onNext). For
Future, we had two situations (success and
failure) and so we needed two handlers,
onSuccess and onFailure.

Observer

With Observable, we now have three states. This
starts to get unwieldy, so for convenience we
bundle them up into an Observer. Observer
objects define three functions: onNext, onError,
and onCompleted. When an Observer subscribes
to an Observable, that Observable informs the
Observer about its activity by calling these
functions according to the following contract.

The Rx contract

● To produce value, the Observable may call
onNext zero or more times

● To signal an error, the Observable may call
onError at most once

● To signal completion, the Observable may call
onCompleted at most once

● No calls to onNext may be made after the
Observable calls onError or onCompleted

Subject

Just like a Promise acts as a synchronization
point between a producer and consumer of a
Future, a Subject acts as a synchronization point
between an Observable that is producing values
and Observers that consume them. It acts like a
fan-out channel to forward results from a single
Observable to many Observers.

Subject

Subjects implement both the Observable and
Observer interfaces. You can put results into a
Subject by calling the onNext / onError /
onCompleted functions of its Observer interface,
and a Subject can be subscribed to by calling the
subscribe function of its Observable interface.

Types of subjects

There are many types of Subjects which provide
different semantics for deciding which events are
sent or replayed to subscribers. For example,
they may buffer some or all events they have
received so that Observers that subscribe later
can receive a replay of these events.

Operations on Observable

● concat / merge
● buffer / groupBy
● onErrorResumeNext / onErrorReturn
● retry / timeout

● toBlockingObservable

https://github.com/Netflix/RxJava/wiki/Observable

https://github.com/Netflix/RxJava/wiki/Observable
https://github.com/Netflix/RxJava/wiki/Observable

Reactive Programming
in Practice

 MVVM, Rx, and ReactiveUI in
the Windows Phone client

MVVM Interfaces
interface INotifyPropertyChanged {

 event PropertyChangedEventHandler PropertyChanged;

}

public string Id {

 get { return _id; }

 set {

 _id = value;

 Changed(“Id”);

 }

}

public void Changed(string propName) {

 if (PropertyChanged != null) {

 PropertyChanged(this,

 new PropertyChangedEventArgs(

 propName));

 }

}

MVVM Interfaces
interface ICommand {

 bool CanExecute();

 void Execute();

 event EventHandler CanExecuteChanged;

}

Rx – Reactive Extensions

● First common* implementation of FRP
● Influenced creation of RxJava / ReactiveCocoa
● subscribeOn(Thread) /

observeOnDispatcher ensures producer
(observable) code runs in background thread but
consumer (observer) code runs on the UI thread

ReactiveUI

● C# MVVM framework based on Observables
instead of events

● Allows complex cross-event behavior to drive UI
changes and Commands’ ability to execute

● ReactiveCollections hold ReactiveObjects and
notify when items are added, removed, changed,
or emit events

● Works on Android / iOS / Mac with Xamarin

WP – composing UI observables
_loginCommand = new ReactiveCommand(this.WhenAny(

 i => i.Busy,

 i => i.Email,

 i => i.Password,

 i => i.PhoneNumber,

 (b, e, p, n) =>

!b.Value &&
!String.IsNullOrEmpty(e.Value) && !String.
IsNullOrEmpty(p.Value) && !String.
IsNullOrEmpty(n.Value) && ValidateAll()));

_loginCommand.Subscribe(DoLoginAction);

WP – creating derived UI collections
public ReactiveCollection<MenuItem> EnabledItems {

 get { return _enabledItems; }

}

...

_menuItems.ChangeTrackingEnabled = true;

_enabledItems = _menuItems.CreateDerivedCollection(i => i,
 i => i.
IsEnabled);

